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ABSTRACT

Context. The dynamics in the photosphere is governed by the multi-scale turbulent convection termed as granulation and supergranu-
lation. It is important to derive three-dimensional velocity vectors to understand the nature of the turbulent convection and to evaluate
the vertical Poynting flux toward the upper atmosphere. The line-of-sight component of the velocity can be obtained by observing the
Doppler shifts. However, it is di�cult to obtain the velocity component perpendicular to the line-of-sight, which corresponds to the
horizontal velocity in disk center observations.
Aims. To develop a new method based on a deep neural network that can estimate the horizontal velocity from the spatial and temporal
variations of the intensity and vertical velocity and to suggest a new measure for examining the performance of the method.
Methods. We developed a convolutional neural network model with a multi-scale deep learning architecture. The method consists of
multiple convolutional kernels with various sizes of the receptive fields, and it performs convolution for spatial and temporal axes.
The network is trained with data from three di↵erent numerical simulations of turbulent convection. Furthermore, we introduced a
novel coherence spectrum to assess the horizontal velocity fields that were derived at each spatial scale.
Results. The multi-scale deep learning method successfully predicts the horizontal velocities for each convection simulation in terms
of the global-correlation-coe�cient, which is often used for evaluating the prediction accuracy of the methods. The coherence spec-
trum reveals the strong dependence of the correlation coe�cients on the spatial scales. Although coherence spectra are higher than 0.9
for large-scale structures, they drastically decrease to less than 0.3 for small-scale structures wherein the global-correlation-coe�cient
indicates a high value of approximately 0.95. By comparing the results of the three convection simulations, we determined that this
decrease in the coherence spectrum occurs around the energy injection scales, which are characterized by the peak of the power
spectra of the vertical velocities.
Conclusions. The accuracy for the small-scale structures is not guaranteed solely by the global-correlation-coe�cient. To improve
the accuracy in small-scales, it is important to improve the loss function for enhancing the small-scale structures and to utilize other
physical quantities related to the non-linear cascade of convective eddies as input data.
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1. Introduction

The dynamics in the solar photosphere are governed by ther-
mally driven convection. This in turn produces cellular patterns
termed as granules that are observed in visible-light continuum
images. The bright areas with hot rising flows are surrounded by
darker and cooler intergranular lanes. A typical granule has a di-
ameter of approximately 1000 km and lasts for approximately 10
min (Nordlund et al. 2009 and references therein). The turbulent
nature of the granular convection inherently creates small-scale
flow structures that are smaller than the typical size of granules
(e.g. Matsumoto & Kitai 2012, Katsukawa & Orozco Suárez
2012, Rempel 2018). These types of small-scale flows interact
with magnetic fields and can produce the Poyinting flux upward.
This in turn can drive various phenomena, such as explosions
(Shibata et al. 2007; Toriumi et al. 2017), jets (Hollweg et al.
1982; Iijima & Yokoyama 2017), and heating (van Ballegooijen
2011; De Pontieu et al. 2012), in the upper atmosphere, chro-
mosphere, and corona. Supergranulation is another convective

patterns observed on the solar surface, which is characterized
by a horizontal flow fields with the large spatial scale of about
30 Mm (Rieutord et al. 2010b) and the typical lifetime of about
1.7 days (Hirzberger et al. 2008). Photospheric magnetic fields
are passively advected into the edges of supergranules and form
network structures (Gošić et al. 2014). Recent observation found
that persistent vortex flows exist at supergranular vertices, and
magnetic flux can be concentrated in the vortices (Requerey et
al. 2018).

We can obtain the line-of-sight (LOS) component of the flow
velocities by a spectroscopic observation via the Doppler e↵ect.
Conversely, to date, there are no direct methods for observing
the components perpendicular to the LOS. These components
correspond to the horizontal velocity on the solar surface in disk
center observations. The most commonly used method for esti-
mating the horizontal velocity field is local correlation tracking
(LCT; November & Simon 1988). This method uses two con-
secutive images and computes the cross-correlation, and thereby
detects the motions of granule patterns. Although the LCT tech-
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Table 1. Number of kernels in each convolutional layer.

3 ⇥ 3 7 ⇥ 7 15 ⇥ 15 31 ⇥ 31 51 ⇥ 51
3D Conv 60 40 20 10 5
2D Reduce 20 10 5 5 2
2D Conv 60 40 20 10 5

Notes. ’2D Reduce’ indicates 1 ⇥ 1 convolution before each 2D convo-
lutional layer.

nique can evaluate the horizontal velocity with good accuracy
on a larger scale, its accuracy on a scale smaller than granules
is limited by as much as factor of three (Verma et al. 2013) or
more (Malherbe et al. 2018). The errors are preferentially high
in the boundaries between granular cells (Louis et al. 2015). This
is mainly due to the fact that the window utilized in the LCT
method to compute the cross-correlations blurs velocity fields.
However, the accuracy on a smaller scale is important for eval-
uating the interaction between magnetic fields and horizontal
flows because the magnetic fields are often concentrated in small
regions in the photosphere (e.g., Parnell 2002).

An alternative approach involves identifying features that are
observed as bright points in G-band or continuum images and
obtaining horizontal velocities by tracking them (Berger et al.
1998; Utz et al. 2010). The method can provide horizontal ve-
locities of small magnetic features in intergranular lanes. Given
that such magnetic features appear associated with strong con-
centrations of magnetic fields, we cannot obtain velocity fields
and their spatial distribution across the entire areas by using this
method.

There is a new method for estimating the horizontal veloc-
ity that employs a deep learning approach. Asensio Ramos et al.
(2017) developed a model using a convolutional neural network
(DeepVel), which was trained on a set of velocity fields simu-
lated for the photosphere. DeepVel can estimate the horizontal
velocity at various heights in the solar atmosphere without av-
eraging. Tremblay et al. (2021a) showed that the Pearson linear
correlation between the estimation and the answer was approxi-
mately 0.8. The correlation increases when the horizontal veloc-
ity fields are averaged over several granular lifetimes (Tremblay
et al. 2018); the increment of the accuracy by taking the average
shows the same trend as the LCT. The results of DeepVel and
LCT are similar when they are averaged, however, DeepVel still
has the advantage of reproducing the kinetic power spectra on
sub-supergranule scales. Tremblay & Attie (2020) developed a
new architecture for DeepVel using the U-NET architecture and
found that it is more e↵ective than other tracking methods. How-
ever, their accuracies were not verified at various spatial scales.

There are several concerns of estimating the horizontal ve-
locity on small scales, which should be clarified before we use
the method for observational data. The motivation of this study
was to evaluate the accuracy of the above methods on various
spatial scales and reveal their weaknesses and possible improve-
ments. We developed a new method for estimating the spatial
distribution of the horizontal velocity based on a multi-scale
deep learning architecture with several sizes of convolutional
kernels to capture the multi-scale nature of the solar convection.
We adopted the new method to three di↵erent numerical simu-
lations of convection and discussed the relationship between the
power spectra of the velocities and performance of the network.
Furthermore, we suggest a new measure for evaluating the scale-
by-scale velocity estimation.
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Fig. 1. Structure of the network. BN and SE denote the batch normal-
ization and squeeze-and-excitation, respectively. The number of kernels
in each convolutional layer is presented in Table 1.

2. Method

We developed a convolutional neural network that predicts the
spatial distribution of the horizontal velocity from the spatial and
temporal variations of vertical velocity and temperature1. This
model includes multi-scale deep learning architectures: the con-
volution layers have various sizes of the receptive fields (Figure
1 and Table 1). The sizes of the kernels corresponded to 3⇥3,
7⇥7, 15⇥15, 31⇥31, and 51⇥51. This type of multi-scale archi-
tecture exhibits an advantage in detecting the solar convection
motion, which is highly turbulent to the extent that the horizon-
tal velocities exhibit broad power spectra. This architecture is
similar to the inception module (Szegedy et al. 2014). The in-
ception module is a network that consists of kernels with various
sizes, i.e., 1⇥1, 3⇥3, and 5⇥5, and the pooling layer. By utilizing
the kernels with varying sizes, the inception module can not only
e�ciently detect spatially concentrated structures in a single re-
gion but also highly spread structures.

In the first block of the model, 3-dimensional convolutions
were conducted along the spatial and temporal axes, and the
channels corresponded to the di↵erent physical quantities. Af-
ter the first block, the data was reshaped, and thereby time and
physical quantities were converged into the new channels. Then,
in the second block, the convolutions were conducted only along

1 The trained network and sample data set can be found in https:
//github.com/RT-Ishikawa/MultiScaleDL.
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Fig. 2. Representation of the training data sets. The spatial distributions of the vertical velocities (top panels) and Y component of the horizontal
velocities (middle panels) of the non-local (left), local (center), and MURaM (right) simulation data. The bottom panels show the probability den-
sity functions (left), power spectra of the horizontal velocities (center), and power spectra of the vertical velocities (right) of the three simulations.
The vertical and horizontal velocities in the simulations are normalized with zero and unit dispersion. This satisfies Equation (3).

the spatial axes. A potential problem corresponds to the large
number of parameters due to the large size of kernels corre-
sponding to 31⇥31 and 51⇥51. To reduce the number of pa-
rameters, we also included 1x1 convolutions before each con-
volution layer. Furthermore, some of the outputs of the convolu-
tions were highly correlated. This can decrease the e�ciency of
the optimization. The 1⇥1 bottle-neck layer can partially resolve
this problem. After the 3-dimensional convolutions, the feature
maps have 4 dimensions: two spatial sxes, temporal axes, and
channels. The reshape layer concatenate the temporal axes and
the channels to change the structure of the feature maps into 3 di-
mensions. The squeeze-and-excitation block (Hu et al. 2018) can
improve the performance of the network by modelling interde-
pendencies between the channels. This squeeze-and-excitation
block produces a collection of modulation weights for the chan-
nels. These weights are applied to the feature maps by multi-
plying and the results are fed into the subsequent layers. Addi-
tionally, we included the batch normalization (Io↵e & Szededy
2015) after all the convolutions. This normalized the outputs of
convolutions into zero mean and unit covariance, and this in turn
accelerated the training. All the convolution layers were initial-
ized with a random method (He et al. 2015a). Asensio Ramos
et al. (2017) developed a deep neural network model (DeepVel)
to estimate the horizontal velocity. Their model was based on
ResNet (He et al. 2015b), which consists of deeply stacked lay-
ers with only 2-dimensional convolutions 2 with a receptive field

2 Asensio Ramos et al. (2017) that describe the convolution as ‘3-
dimensional’. The convolution was performed along spatial axes (x and
y axes) and also dealt with the channels. In this paper, we termed this
as ‘2-dimensional’ after the procedure name ‘Conv2D’ in Keras. The

of 3⇥3. The total number of trainable parameters of our model
corresponded to ⇠ 4.0⇥105, which was less than that of DeepVel
by a factor of 4.

3. Data

To train the neural network, we used numerical simulation data
in three di↵erent types of convection models. By comparing
several cases with di↵erent energy injection scales and spectral
properties, we can evaluate and discuss the versatility of the neu-
ral network.

The first model is a convection model, in which convection
is driven via cooling at the top boundary. We termed this model
as non-local one. The 3-dimensional compressible MHD turbu-
lence without any rotations was considered in a Cartesian do-
main by covering the depth of the convection zone (Masada &
Sano 2016). The horizontal sizes of the domain were four times
larger than the vertical size. The super-adiabatic condition with
the superadiabaticity � ' 10�5 was imposed on only 5% of the
region to ensure that the top boundary was convectively unsta-
ble, whereas the remaining part of the region remained adiabatic
to ensure convective stability. The cool downward plumes pro-
duced near the top boundary drove the convection: fast down-
ward motions with the entrainment behavior appeared locally
and transiently.

The second model was termed as local model. This is a con-
vection model, in which convection is driven by local entropy-
gradient. The entire convective zone was convectively unstable

3-dimensional convolution in our network represents the convolution
along the spatial and time axes as channels.
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Fig. 3. Spatial distributions of the vertical velocity, Y component of the horizontal velocities during the prediction and simulation, and the di↵erence
between them in the Non-local model (top), the Local model (middle), and the MURaM model (bottom), respectively. The vertical velocity and
horizontal velocity in the simulation are normalized as zero mean with unit dispersion. It should be noted that the vertical velocity and temperature
are used for the inputs even though only the vertical velocity is shown in this figure.

with super-adiabatic conditions. The same Cartesian domain was
considered as that in the non-local model. Unlike the non-local
model, convective cells were generated over the entire convec-
tive zone, in which the spatial scale of cells were dependent on
the local scale height in the vertical direction (Cossette & Rast
2016). Hence, the convective motions with larger cells, which
were produced near the bottom region, were more pronounced in
the local model when compared to those in the non-local model.

In the numerical simulations of the non-local and local mod-
els, a spatial resolution of 256 ⇥ 256 ⇥ 128 was used. The other
physical and numerical parameters were similar to those in an
earlier study by Masada & Sano (2016) (see Yokoi et al. 2021 for
details.) The apparent convective cells in the non-local and lo-
cal simulations roughly correspond to supergranular cells rather
than granular ones. The spatio-temporal data of the simulated
turbulent fields were utilized for training the network, where the
MHD turbulence was fully developed to the statistically steady
state after several tens of the turnover time of the convective
cells. We used the temperature and vertical velocities at 3.3 Mm
below the top boundary as the input data of the network. Further-
more, the horizontal velocities were at the same depth as the cor-
responding ground truth. We performed downsampling for these

data by setting their sizes to 128⇥128 pixels, which covered a
region of 748 Mm⇥748 Mm. Specifically, 1000 snapshots were
available for both the models. Because the input data do not rep-
resent the parameters on the surface, the trained network is not
directly applicable to an observation. Instead, we compare the
characteristics of the network with those trained with a realistic
simulation, as described below.

We also used a three-dimensional compressible radiation
MHD simulation, which was calculated with the MURaM code
(Vögler et al. 2005), as the third model. In the code, the radia-
tive energy exchange was solved via a non-gray radiative transfer
under the assumption of local thermal equilibrium (LTE) to re-
produce more realistic granular scale flows in the photosphere.
Hence, in this study, we used the same simulation setup as that
used by Riethmüller et al. (2014), in which the simulation box
covered 6 Mm in both horizontal directions with a grid size of
10.42 km and 1.4 Mm in the vertical direction with a 14-km grid
size. A unipolar homogeneous vertical magnetic field of Bz = 30
G was introduced as an initial condition, and the simulation was
run for a total solar time of 16 h, which was long enough to reach
a statistically stationary state. We obtained more than 1600 snap-
shots of the data cube with a mean cadence of 35 s. We extracted
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a small region, which covers 5.4 Mm in both the horizontal di-
rections, and downsampled the region with a grid size of 42 km.
Thus, the size of the region corresponded to 128⇥128 pixels. We
used the temperature and vertical velocity at the surface with an
optical depth of unity.

The snapshots of the three simulations are shown in Figure
2. The top three panels show the spatial distributions of the ver-
tical velocities (Uz), while the middle three panels show those of
the horizontal velocities (Uy). The vertical and horizontal veloc-
ities of each model were normalized with averages and standard
deviations. The bottom left panel shows the probability density
functions of the horizontal velocities of the three simulations.
The fast velocity component existed in certain localized regions
within short lifetimes. This appeared as a non-gaussian distribu-
tion in the probability density function. The power spectra of the
horizontal and vertical velocities are shown in the bottom center
and right panels. Here, the power spectrum of a physical quantity
X is defined as follows:

EX(k) =
1

2�k

X

p
k2

x+k2
y2[k��k/2,k+�k/2)

|X̂(kx, ky)|2, (1)

where �k denotes the sampling interval of the wavenumber and
X̂ denotes the Fourier transform of the spatial distributions of the
physical quantity X. The Fourier transform of X is as follows:

X̂(kx, ky) =
1

N2

X

x,y

X(x, y) exp[�i(kxx + kyy)], (2)

where N2 denotes the number of pixels in an image, which cor-
responded to 128⇥128. Then, the power spectrum was consistent
with that defined in a previous study (Rieutord et al. 2010a) and
satisfied

1
2

X2 =

Z 1

0
EX(k)dk, (3)

where the overline denotes the average over the entire FOV.
Given the normalization of the vertical and horizontal velocities,
the dispersion X2 corresponded to unity.

The power spectra of the vertical velocity showed their
peaks. These peaks corresponded to the ’typical’ scales of the
convective cells, while the spectra were broad. The power spec-
tra of the horizontal velocity exhibited high power on large-
scales, whereas they did not exhibit clear peaks, especially in
the non-local and local models.

4. Training process

We used the spatial distributions of temperature and vertical ve-
locity with a size of 128 ⇥ 128 pixels and three consecutive
frames as the input data. The output of the network was the spa-
tial distribution of the horizontal velocity (Ux or Uy). We used
the mean squared error between the horizontal velocities pre-
dicted by the network and those in the original data set for the
loss function. The loss function was expected to be minimized in
the training. Each physical quantity in the data set was normal-
ized to zero average and unit standard deviation. We prepared
350 sets of data for the training, 40 sets for the cross-validation,
and 40 sets for the test. Although the snapshots in the data sets
were temporally consecutive, the training, cross-validation, and
test data sets were separated su�ciently with an ample time in-
terval that was longer than the turn-over times of the convection

Table 2. Global-correlation-coe�cients with di↵erent inputs.

Non-local Local MURaM
Uz, T 0.948 0.948 0.771
Uz 0.942 0.950 0.738
T 0.890 0.884 0.668

in all the simulations. The optimization of the network was per-
formed by using the Adam first-order gradient-based optimiza-
tion (Kingma & Ba 2014).

Given the normalization of the training data set, the average
and standard deviation of the horizontal velocity predicted by the
network were also near zero and unity, respectively. When we
develop a network for application to an actual observational data,
the network should be supervised by realistic numerical simu-
lations of the photosphere, such as MURaM, with the spectral
line synthesis and degradation with respect to the point-spread-
function of observational instruments. The network should pre-
dict the absolute value of the horizontal velocity without any nor-
malization. Hence, restoration of the velocity from the normal-
ized value after the prediction by multiplying the standard devi-
ation of the horizontal velocity in the simulation or that obtained
with recent observations (e.g., Oba et al. 2020) can potentially
be an option.

5. Results

In this section, we show the comparison between the original
simulation and model prediction of the horizontal velocities for
the three convection models. In the LCT and DeepVel, only the
emergent intensity distributions were used for the estimation.
Furthermore, we used the vertical velocity distributions for the
input of the network and examined their benefits. Table 2 lists
the results with di↵erent inputs for each convection model. The
results showed that higher accuracy of estimation was realized
by using the vertical velocity when compared to the tempera-
ture distributions. This result is consistent with Tremblay & Attie
(2020) By using vertical velocity and temperature, the network
exhibited the highest global-correlation-coe�cient. However, it
was slightly smaller than that obtained by using only vertical ve-
locity for the local model. In the rest of this paper, we focus on
the network that uses the vertical velocity and temperature as the
input.

Figure 3 compares the horizontal velocity distributions in the
simulation and prediction for each convection model. In the fig-
ure, similar cellular patterns are observed in the simulated and
predicted distributions. The global-correlation-coe�cients were
0.948, 0.948, and 0.771 for the non-local, local, and MURaM
models, respectively. The performance of the network for the
MURaM model was worse when compared with those for the
non-local and local models in terms of the global-correlation-
coe�cients, and the predicted patterns appeared blurred. The
right column in Figure 3 shows the di↵erences between the simu-
lations and predictions. The di↵erence was expected to be likely
high at the boundaries between the convection cells. This was
similar to the trend observed in the case of the LCT method
(Louis et al. 2015). Although only the results for the Uy are
shown in the Figure, the results for the Ux are similar to those
because of the symmetric setup of the simulation and the net-
work.

Figure 4 shows the comparisons between the simulated ve-
locity fields and predicted velocity fields in terms of the power
spectra and histograms. The power spectra of the predicted hor-
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Fig. 5. Coherence spectra between the simulation and prediction as
a function of the wavenumber with our network (solid) and DeepVel
(dashed; Asensio Ramos et al. 2017). It should be noted that the ver-
tical velocity distribution as opposed to the emergent intensity is used
for the input to DeepVel . The coherence spectra show strong scale-
dependence.

izontal velocity distributions were similar to those of the sim-
ulation in the larger scales. However, the power spectra were
slightly underestimated in all the scales and noticeable errors
were observed in the smaller scales. In the case of the MURaM
model, the network significantly underestimated the velocity in
small-scales. The occurrence of the fast velocities became less
frequent in the predictions. The blur in the images blended the
fast velocity components which were preferentially localized in
the small regions.

We also investigated dot products between the estimated and
simulated horizontal velocity vectors. The normalized dot prod-

uct at each pixel is defined as follows:

A =
v · v0

||v|| ||v0||
, (4)

where v and v0 represent the estimated and simulated horizontal
velocity vectors, respectively. This definition is consistent with
Tremblay & Attie (2020) and Tremblay et al. (2021b). This dot
product indicates the di↵erence of the orientation of the vectors.
The histograms shown in the right column of Figure 4 have a
peak around A ⇠ 1, which indicates that the estimated and simu-
lated horizontal velocity vectors are well aligned in most regions.
The histograms have tails toward the negative dot products, al-
though the fraction of the tails is small. The tail is relatively large
in the histograms of the MURaM model. The averages of the
normalized dot products are 0.92, 0.91, and 0.70 for the non-
local, local, and MURaM models, respectively.

To examine the performance of the network, we defined the
coherence spectrum, which represents the correlation at each
wavenumber. This has never been introduced in past studies in-
cluding as Louis et al. (2015) and Asensio Ramos et al. (2017).
The coherence spectrum of distributions of two physical quan-
tities X and Y can be defined as follows. First, we calculate the
cross-spectrum of X and Y as follows:

S XY (k) =
1

2�k

X

p
k2

x+k2
y2[k��k/2,k+�k/2)

hX̂⇤Ŷi(kx, ky), (5)

where asterisk denotes the complex conjugate, and the ensemble
average hi is calculated over all the 40 frames in the test data.
Finally, we defined the coherence spectrum by normalizing the
cross-spectrum with the average power spectra as follows:

�XY (k) =
S XY (k)phEXi(k)hEYi(k)

. (6)

The cross-spectrum X̂⇤Ŷ is equivalent to the Fourier transform
of the cross-correlation function of X and Y . Therefore, the co-
herence spectrum �XY (k) represents the correlation between the
two distributions at each wavenumber. A useful relationship ex-
ists among the coherence spectrum, power spectra, and global-
correlation-coe�cient as follows:

RXY (0, 0) =
P

k
phEXihEYi�XY (k)

pP
khEXi(k)

P
k0 hEYi(k0)

⇡
P

k hEXi(k)�XY (k)
P

khEXi(k)
, (7)

where RXY (0, 0) denotes the global-correlation-coe�cient with-
out any translation (see Appendix A). This equation indicates
that the global-correlation-coe�cient is equivalent to the aver-
age of the coherence spectrum weighted with the power spectra.
Hence, this highlights the importance of the coherence spectrum
analysis, shown in this study, in examining the prediction ac-
curacy scale-by-scale, particularly in small-scale structures. As
evident in the local model, the power spectrum of the horizontal
velocity exhibited high power in large-scales. Subsequently, the
coherence spectra of large-scales exhibited high importance for
the global-correlation-coe�cient. Conversely, the power spec-
trum of the horizontal velocity in the MURaM model exhibited
relatively high power in small-scales when compared to the non-
local and local models. This indicated higher importance of the
coherence spectra of small-scales.

The results of the coherence spectra �XY (k) for the three con-
vection models are shown in Figure 5. We reconstructed the
DeepVel and trained it with three convection simulations with
vertical velocity as the input, while the original DeepVel was
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trained with the emergent intensity. The performance of our net-
work was similar or better than that of DeepVel for all the sim-
ulation data and at all the wavenumbers with the exception of
the large-scale in the non-local model. However, it was still dif-
ficult to reproduce the small-scale structures. In the non-local
and local models, the coherence spectra exceeded 0.9 for small
wavenumbers and they drastically decreased to 0.3 or less for
large wavenumbers. Furthermore, even the global-correlation-
coe�cients for both the models exceeded 0.9. The discussion
on the small-scale structures should be treated with care even if
the global-correlation-coe�cient is high. In the MURaM model,
which exhibited lower steep power spectra of the horizontal ve-
locity (Figure 2), the performance was limited in a wide range
of wavenumbers when compared with those of the non-local and
local cases. However, a rough trend and better accuracy in large-
scale were observed.

When comparing the results of the three convection models,
it can be observed that the di↵erent onset of the significant de-
crease in the coherence spectrum appears on smaller scales as
opposed to on energy injection scales where the power spectra
of the vertical velocities have their peaks. This signature sug-
gests that the decrease in performance is not simply due to the
small size of the spatial patterns, but also due to a reason related
to turbulent structures. For example, the energy injection scale of
k ⇠ 0.7, which is observed from the power spectrum of the ver-
tical velocity in the non-local case (Figure 2), is correlated to the
onset wavenumber for degrading the prediction accuracy toward
the high wavenumber region. This is attributed to the non-linear
cascade of convective eddies. As presented in Table 2, the high
performance of this network relies on the vertical velocity. This
implies that the relationship between the horizontal and vertical
flows is rather simple in large-scales, whereas it is more complex
in small-scales probably due to the non-linearity.

The small global-correlation-coe�cient for the MURaM
model is related two characteristics of the convection: large en-
ergy injection scale and small slope of the power spectra. The
energy injection scale is higher than that of the non-local model,
which diminishes the coherence spectra in a wide range of spa-
tial scales. In combination with the higher power in the small-
scales, the resultant global-correlation-coe�cient becomes small
for the MURaM model. A large global-correlation-coe�cient
was realized for the local model even though the energy injection
scale was similar to that in the MURaM model. This was due to
the fact that the power spectrum of the horizontal velocity in the
local model exhibited a steep slope, which in turn induced large
weights on the large-scales.

To improve the accuracy at smaller scales, the optimization
of the small kernels should be performed more e�ciently. A
potential method of realizing this involves improving the loss
function. In this study, the network was trained by minimiz-
ing the mean-squared-error between the prediction and simula-
tion. Given that the horizontal velocity distribution exhibits high
power in large-scales, as shown in Figure 2, larger weights are
used on the larger scale structures for the loss function. This can
promote the learning of the large-scale structures and can inhibit
the detection of the small-scale structures. Hence, an appropri-
ate loss function can improve the optimization. An alternative
method involves increasing the number of physical quantities to
the input. In this study, the spatial distributions of the vertical ve-
locity and temperature were used as the input data. It can be ben-
eficial to use other physical quantities, which are associated with
the non-linear process such as the velocities at multiple heights.
Furthermore, the spatial distributions with small-scale enhance-

ment obtained via pre-processing can also aid in improving the
performance.

6. Conclusions

We developed a novel convolutional neural network to estimate
the spatial distribution of horizontal velocity by using the spatial
distributions of temperature and vertical velocity. This new net-
work was comprised of convolutional layers with various sizes of
receptive fields. This led to e�cient detection of spatially spread
features and concentrated features. Given that the velocity distri-
bution driven by the convection exhibited multi-scale structures
and broad power spectra, this type of a multi-scale network ex-
hibited an advantage in detecting the solar surface convective
motion. Our network exhibited a higher performance on almost
all the spatial scales when compared to those reported in previ-
ous studies.

In most previous studies, the evaluation of the method was
performed solely via the global-correlation-coe�cient between
the simulated velocity field and prediction velocity field. This
in turn cannot show the accuracy on di↵erent spatial scales. To
evaluate the accuracy at each scale, we introduced the coherence
spectrum, which represents the correlation at each wavenumber.
The evaluation with the coherence spectrum revealed the strong
scale-dependence of the accuracy. The horizontal velocities at
large-scales were well predicted with our network, while those
at small-scales were limited. Recently, the small-scale vortical
motions in the solar photosphere has attracted significant atten-
tion observationally (Bonet et al. 2008; Vargas Domínguez et al.
2011) and theoretically (Shelyag et al. 2011; Moll et al. 2011).
However, given the rapid decrease of the accuracy in estimating
the horizontal velocities toward the small-scales, we should be
careful when discussing them observationally. The accuracy for
the small-scale structures is crucial for calculating vorticities via
a derivative of horizontal velocities.

By comparing the results of the three convection models, we
observed that the rapid decrease in coherence spectrum occurred
on the scales that were lower than the energy injection scales,
which were characterized by the peaks of the power spectra of
the vertical velocities. This implies that the network was not
appropriately trained to reproduce the velocity fields in small-
scales generated by turbulent cascades. To improve the accuracy
on small-scales, it is potentially important to consider improving
the loss function in the network. This can be realized by adding
more weights on the small-scale structures and inputting other
physical quantities, such as the vertical velocities at multiple
heights, which can be related to the non-linear process. These
challenges can be explored in future studies.

In this study we developed a new model for estimating the
horizontal velocity field with numerical simulation data and
evaluated its performance with a new measure. By adopting
our network to the high-resolution observation data obtained via
the SUNRISE-3 balloon-born telescope (Katsukawa et al. 2020;
Feller et al. 2020) and Daniel K. Inouye Solar Telescope (Rim-
mele et al. 2020; Rast et al. 2021), we can estimate the horizon-
tal velocity distributions with a high accuracy in a wide range of
wavenumbers.
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Appendix A: Coherence Spectrum Analysis

We introduce a new measure coherence spectrum for evaluating
the network. In this section, we describe the definition of the
coherence spectrum and provide a proof of Equation (7). When
we have the spatial distributions of physical quantities X and
Y , we can define the 2-dimensional cross-spectrum by using the
Fourier transform as follows:

S XY (kx, ky) = X̂⇤Ŷ , (A.1)

X̂(kx, ky) =
1

N2

X

x,y

X(x, y) exp[�i(kxx + kyy)]. (A.2)

The power spectrum is as follows:

EX(k) =
1

2�k

X

p
k2

x+k2
y2[k��k/2,k+�k/2)

|X̂(kx, ky)|2, (A.3)

where �k is the sampling interval of the wavenumber. Further-
more, the cross-spectrum is equivalent to the Fourier transform
of the correlation function between X and Y , which corresponds
to the Wiener–Khinchin theorem.

CXY (⇠, ⌘) =
X

kx,ky

S XY (kx, ky) exp[i(kx⇠ + ky⌘)]. (A.4)

Then, we obtain the relationship between the global-correlation-
coe�cient RXY and 2-dimensional cross-spectrum:

RXY (0, 0) =
1p

CXX(0, 0)CYY (0, 0)

X

kx,ky

S XY (kx, ky). (A.5)

Here, we define the cross-spectrum by calculating the ensemble
average hi and integrating the 2-dimensional cross-spectrum as
follows:

S XY (k) =
1

2�k

X

p
k2

x+k2
y2[k��k/2,k+�k/2)

hS XYi(kx, ky). (A.6)

The phase of the averaged 2-dimensional cross-spectrum corre-
sponds to the ’average’ phase di↵erence between the two Fourier
components. Given the contour integration, the imaginary part of
the cross-spectrum converges to zero because S XY (�kx,�ky) =
S ⇤XY (kx, ky) is always satisfied. This integration is justified when
the statistical isotropy is assumed or else the resultant coherence
spectrum can be misleading. Consequently, the coherence spec-
trum defined below is a real number.

�XY (k) =
S XY (k)phEXi(k)hEYi(k)

, (A.7)

Hence, we obtain the following.

RXY (0, 0) =
P

k
phEXihEYi�XY (k)

pP
khEXi(k)

P
k0 hEYi(k0)

, (A.8)

where we use equation CXX(0, 0) = X2 = 2
P

k EX(k)�k and con-
dition of the statistical steady state X2 = hX2i.
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